## ST. CUTHBERT'S RC PRIMARY SCHOOL

Mathematics: Written Calculation Policy


MARCH 1, 2020

This calculation policy has been written by the Maths Coordinator in discussion with school staff. It outlines the expectations for written calculations in each year group at St. Cuthbert's.

The policy is designed to ensure a consistent approach to calculation methods across the whole school. Teachers are advised to support children's understanding of a particular method before introducing them to the next stage.

The objectives for each year group have been taken from the National Curriculum. Ideas for using concrete and pictorial representations to support pupils' understanding of abstract methods have been taken from the White Rose Scheme of Work and calculation guidance from the NCETM.

Concrete - children use concrete objects and manipulatives to help them understand and explain what they are doing.
Pictorial - children then build on this concrete approach by using pictorial representations, which can then be used to reason and solve problems.
Abstract - with the foundations firmly laid, children can move to an abstract approach using numbers and key concepts with confidence.

The policy is divided into sections for each of the four operations: addition, subtraction, multiplication and division. There is also a separate section relating to using the four operations with fractions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Written Calculation Guidance - Addition} \\
\hline \& EYFS \& YEAR 1 \& YEAR 2 \& YEAR 3 \& \& YEA \& R 4 \& \& YEAR 5 \& YEAR 6 \\
\hline  \& \begin{tabular}{l}
Use quantities and objects to add two single digit numbers and count on to find the answer. \\
Find one more than a number (up to 20) using concrete equipment.
\end{tabular} \& \begin{tabular}{l}
Add 1-digit and 2-digit numbers to 20, including zero. \\
To read, write and interpret mathematical symbols involving the addition and equals symbols. \\
To identify one more than a number (calculating not counting).
\end{tabular} \& Add two 2-digit numbers. \& Add numbers with up to 3digits, using formal written methods of columnar addition and subtraction. \& Add nu digits writte colum subtra approp \& \begin{tabular}{l}
mbers \\
sing th meth ar add tion w riate.
\end{tabular} \& with up formal ds of ion and ere \& to 4- \& \begin{tabular}{l}
Add whole numbers with more than 4-digits, including using formal written methods (columnar addition and subtraction. \\
Add decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places (up to 3 d.p ) and complements of 1 (for example, \(0.83+0.17=1\) ).
\end{tabular} \& Using knowledge of the order of operations to carry out calculations involving all four operations. \\
\hline \[
\begin{aligned}
\& \text { \# } \\
\& \frac{1}{2} \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
Use of concrete resources to explore addition in different contexts and using different structures: \\
Aggregation: \\
Three green cubes add four blue cubes - how many cubes altogether? Seven cubes altogether. \\
Augmentation: \\
First there were four people on the bus, then three got on. Now there are seven people on the bus.
\end{tabular} \& Use of bead strings, Base 10, tens frames and other concrete objects:
\[
12+5=17
\]
\(\square\)
\(\square\)
\(\square\)
\(\square\)

\[
6+7=?

\] \& | Use partitioning to add two 2-digit numbers (builds upon prior learning of adding two multiples of 10 and two single digit numbers) |
| :--- |
| No bridging: |
| $45+23$ |
| Bridging through 10: | \& Use of Base 10 and place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred:

$$
317+46=\text { ? }
$$

| $H$ | $T$ | 0 |
| :---: | :---: | :---: |
| 0000 | 000 | 000 |
|  | 00 | 00 |
| 0000 | 000 | 000 | \& Use of alongsid to cons unders $3356+$ \&  \&  \& | nters |
| :--- |
| hod | \& Continue to use apparatus and practical resources alongside formal written method e.g. place value counters:

$$
1.3+3.52=\text { ? }
$$

| Ones | Tenths | Hundredths |
| :--- | :--- | :--- |
| 1 |  |  |
|  |  |  |
| 1 |  |  |
| 1 |  |  |

$$
\begin{array}{r}
1.30 \\
+3.52 \\
\hline
\end{array}
$$ \& <br>

\hline
\end{tabular}

|  | Children to represent concrete materials using dots/ crosses/ other images. They can represent on a part-whole model too: $3+4=7$ | Children can use a number line to support addition. Start at the larger number and count on in ones or in one jump to find the answer: <br> Encourage 'bridging through 10' so that pupils are calculating rather than counting: $6+8=$ | Pupils can use dots and dashes to represent Base 10: $57+84=?$ <br> Use of a number line to explore adding the partitioned parts of one of the 2 -digit numbers to the whole of the other 2-digit number: $26+37=?$ | Children to represent the Base 10/ counters in a place value chart, circling when they make an exchange:$243+368=611$$100_{s}$ 10 s Is  <br> 00 0000 $\rho 00$  <br> 000 0000 0888  <br>  00 0  <br> 6 1 1  | Repr place form <br> 4258 <br> I need for on | nt ad lue gri olum 3215 | itions <br> d alon meth <br> 7473 <br> nge te | n a <br> side <br> d: <br> n ones | Visual representation for addition of decimals using decimal squares: $0.87+0.655=1.525$   |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Children will form numbers but are not expected to form number sentences. <br> Recording can be in the form of pictures or verbal statements (use of the language 'first, then and now for augmentation). <br> Pupils can place numbers onto a structure provided by the teacher (e.g. part-whole model): <br> Four is a part, three is a part and seven is the whole. | Pupils are expected to form number sentences: <br> Place the larger number in your head and count on the smaller number to find your answer. <br> Recognise addition as commutative: $\begin{aligned} & 12+5=17 \\ & 5+12=17 \end{aligned}$ | Partitioning both addends: $\begin{aligned} & \overbrace{20}^{26}+/_{30}^{37} \\ & 20+30=50 \\ & 6+7=13 \\ & 50+13=63 \end{aligned}$ <br> Partitioning one addend: $\begin{aligned} & 26+30=56 \\ & 56+7=63 \end{aligned}$ <br> Pupils draw their own abstract number line: $45+32=$ | Pupils are introduced to the formal written column method, carrying underneath the answer box: <br> 243 $+368$ 611 <br> 11 | Child <br> writt <br> unde | to <br> meth <br> ath | the f d, carr e answ <br> 36 <br> 48 <br> 84 <br> 1 | rmal <br> ing <br> er box: | Children to use the formal written method, carrying underneath the answer box. Insert zeros for place holders: | Continue to practise formal column addition for larger numbers, including those with decimals. |


| Written Calculation Guidance－Subtraction |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EYFS | YEAR 1 | YEAR 2 | YEAR 3 | YEAR 4 | YEAR 5 | YEAR 6 |
| $$ | Use quantities and objects to subtract two single digit numbers and count back to find the answer <br> One less <br> Begin to use appropriate vocabulary | Subtract 1－digit and 2－digit numbers to $\mathbf{2 0}$ ，including zero <br> To read，write and interpret mathematical symbols involving the subtraction and equals symbols． <br> To identify one less than a number（calculating not counting） | Subtract two 2－digit numbers | Subtract numbers with up to 3－digits，using formal written methods of columnar addition and subtraction | Subtract numbers with up to 4－digits using the formal written methods of columnar addition and subtraction where appropriate | Subtract whole numbers with more than 4－digits， including using formal written methods（columnar addition and subtraction <br> Subtract decimals，including a mix of whole numbers and decimals，decimals with different numbers of decimal places（up to 3 d．p．） and complements of 1 （for example， $0.83+0.17=1$ ）． | Using knowledge of the order of operations to carry out calculations involving all four operations |
| $\begin{aligned} & \text { む } \\ & \text { む̀ } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Use physical objects to practically take away： <br> There were 7 animals．Two birds flew away．How many animals were left？ <br> Use of numicon | Use physical objects， counters，cubes，tens frames，numicon etc to show how objects can be taken away： <br> Ololololololololor $\begin{aligned} & 10-8=2 \\ & 10-2=8 \end{aligned}$ <br> Make 14 on the tens frame． Take 4 away to make 10， take one more so you have taken 5： $14-5=9$ | A 2－digit number can be subtracted from a 2－digit number by partitioning the subtrahend into tens and ones．Use Base 10 to subtract： | Use Base 10 or place value counters for the column method，including exchanges：$373-142=\text { ? }$$H$  T 0 <br>    III休代 <br> $507-451=$ ？ | Continue to use place value counters： <br> $5643-4316=$ <br> N．B．remember to show making exchanges across more than one column where there is zero as a place holder． | Continue to use place value equipment when subtracting whole numbers with pupils who do not understand the abstract method． <br> When subtracting decimals， start with the use of place value counters alongside abstract algorithm： $4.54-1.4=?$  $\begin{array}{r} 4.54 \\ -\quad 1.40 \\ \hline \end{array}$ |  |


| 즌 은 는 | Draw pictures and cross off as necessary: $7-2=5$ | Cross out the objects to show what has been taken away: $15-6=9$ <br> Use a number line: <br> Children to present a tens frame pictorially and discuss what they did to bridge back through 10: <br> $14-5=9$ $\square$ | Use of a number line to subtract the tens and then subtract the units, bridging through 10 when necessary: <br> 'Finding the difference' pupils use a number line to jump from the smallest to the largest number: | Pupils can represent the Base 10 and place value counters pictorially:$234-88=146$$100 s$ $10 s$ $1 s$ <br> 00 000 0000 <br>  08 88 <br>  88 80 <br> 1 4 6 | Pupils can continue to represent place value counters pictorially. | Pupils can represent the place value counters pictorially. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | As for addition, children are not expected to form number sentences at this stage. Understanding can be assessed using pictures or verbal statements. | Form number sentences to represent calculations: | Pupils to form number sentences: $74-57=17$ <br> Pupils can also place numbers on bar models and part-whole diagrams: | Pupils are introduced to the formal column method. Pupils must understand what has happened when exchanges have been made: | Pupils must be able to explain what has happened when they have made exchanges, particularly across two columns. Do not use commas to separate thousands from hundreds: $\begin{array}{r} 2489^{\prime} \theta^{\prime} 2 \\ -\quad 2433 \\ \hline 225 \\ \hline \end{array}$ | Represent subtraction as a formal column method. <br> Ensure place value columns are lined up currently: $\begin{array}{r} 5 \cdot{ }^{6} 74 \\ -2 \cdot 25 \\ \hline 3 \cdot 4 \quad 9 \\ \hline \end{array}$ | Continue to practise formal column subtraction for larger numbers, including those with decimals. |



| 즌 <br> 은 <br> $\mathbf{U 1}$ | Use visual images to support doubling: <br> Double 3 is 6 <br> Double 5 is 10 | Pupils make representations to show counting in multiples: <br> Pupils use pictures to add equal groups to find a total: $E M B E M 3 \quad 5+5+5=$ <br> Number line to show repeated groups: $10000_{4}^{10000} 180001_{12}$ <br> Children begin to make arrays by making equal groups and building them up in columns or rows: $\begin{aligned} & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$ | Pupils to represent arrays pictorially: <br> Use the multiplication symbol and pictures to calculate the total: <br> Use of a number line to represent repeated addition: $\begin{aligned} & 2 \times 6=12 \\ & 6 \times 2=12 \end{aligned}$ | Pupils can represent concrete manipulatives pictorially: <br> Base 10 $4 \times 15=60$ <br> Place value counters$3 \times 23=69$$10 s$ $1 s$ <br> 00 000 <br> 00 000 <br> 00 000 <br> 6 9 | Pupils can represent place value counters pictorially. | Pupils can represent place value counters pictorially. | Continue to practise the methods of short and long multiplication for larger numbers, including for decimal numbers. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pupils need to understand that doubling means 'twice as many'. <br> They are not expected to produce written number sentences at this stage. Encourage pupils to say their doubles as they build them: <br> Double 4 is 8. <br> Pupils can place numbers onto a structure provided by the teacher (e.g. part-whole model). | Pupils record their understanding in sentences, not through formal multiplication: $\begin{aligned} & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$ <br> Double 4 is 8 $4+4=8$ | Pupils record their work using the multiplication symbol, linking it to repeated addition: $\begin{aligned} & 6+6+6=18 \\ & 3 \times 6=18 \end{aligned}$ <br> Understand commutativity: $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$ | Pupils record their work as a short multiplication, carrying underneath the answer box: <br> $24 \times 6$ becomes <br> Answer: 144 | Pupils record their work as a short multiplication, carrying underneath the answer box: <br> $342 \times 7$ becomes <br> Answer: 2394 | Short multiplication: <br> $2741 \times 6$ becomes <br> Answer: 16446 <br> Long multiplication (carrying within the calculation): |  |



|  | Use of visual images to support halving and sharing: <br> Have these strawberries been shared equally? <br> Are these pupils in fair / equal groups? | Pupils use images to group and share quantities: <br> Grouping: <br> How many groups of 2 can you make? <br> Sharing: <br> 6 shared between 2 groups is 3 . | Pupils can draw images to support division: <br> Grouping (quotative) How many equal groups of 5 can you make? <br> $10 \div 5=2$ <br> Sharing (partitive) 15 cakes shared between 3 plates. How many on each plate? $15 \div 3=5$ <br> Use a number line to calculate how many equal groups you can make from a number (repeated subtraction): $20 \div 4=5$ | Use images to support division, including with a remainder: $17 \div 5=3 r 2$ <br> Pupils can draw images to support division: $42 \div 3=14$ | Represent place value counters pictorially: $615 \div 5=123$ | Pupils can draw place value counters pictorially to support written algorithm. | Display images of place value counters to support understanding: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pupils are not required to record written number sentences. Understanding can be assessed through verbal and practical work. <br> Pupils can place numbers onto a structure provided by the teacher (e.g. part-whole model): <br> Sharing 6 into 3 equal groups | Pupils record their understanding in sentences, not through formal division: <br> I can make 5 equal groups of 2. I can make 2 equal groups of 5 . I can make 1 equal group of 10 . | Pupils use the division and equals symbols to record findings: $10 \div 5=2$ | Pupils to use their knowledge of times tables facts to calculate division facts mentally and record in a number sentence: $67 \div 5=13 r 2$ | Complete calculations using the short division algorithm: <br> ${ }_{5} \frac{123}{61^{\prime} 5}$ | Complete abstract calculations using the short division algorithm: $\begin{array}{r} 0 \quad 5 \quad 5 \quad 6 \\ 7 \longdiv { 3 } { } ^ { 3 } 8 { } ^ { 3 } q q ^ { 4 } 2 \end{array}$ <br> Pupils express remainders in different ways according to the context (whole numbers, decimals or fractions): $\begin{aligned} & 5{\longdiv { 4 3 ^ { 3 2 } }}_{08}^{r 2} \\ & 5 \longdiv { 0 8 6 \cdot 4 } \\ & 53^{3} 2 \cdot{ }^{2} 0 \\ & 5 \longdiv { 4 3 ^ { 3 } 2 } \frac { 2 } { 5 } \end{aligned}$ | Use the 'drop down' algorithm for long division, interpreting remainders as whole numbers, fractions or by rounding: $\begin{array}{llllll}  & & & 2 & 8 & 8 \\ 1 & 5 & 4 & 3 & 2 & 0 \\ & & 3 & 0 & \downarrow & \\ & & 1 & 3 & 2 & \\ & & 1 & 2 & 0 & \downarrow \\ & & & 1 & 2 & 0 \\ & & & 1 & 2 & 0 \\ \hline & & & & 0 \end{array}$ <br> Use short division to divide by a 2-digit number when appropriate: <br> Answer: $45 \frac{1}{11}$ |


| Written Calculation Guidance - Addition and Subtraction with Fractions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EYFS | YeAR 1 | YeAR 2 | YEAR 3 | YEAR 4 | YEAR 5 | YEAR 6 |
|  |  |  |  | Add and subtract fractions with the same denominator (within one whole) | Add and subtract fractions with the same denominator (across one whole) | Add and subtract fractions with the same denominator and denominators that are multiples of the same number (including mixed numbers) | Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions. |
|  |  |  |  | Use of concrete materials e.g. fraction bars, fraction circles, paper strips: $\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$ <br> Use of bar models and other visual diagrams: $\frac{3}{8}+\frac{1}{8}=\frac{4}{8}$ $\square$ $\frac{5}{7}-\frac{\square}{7}=\frac{\square}{7}$ <br> Use the language of 'first, then and now' for subtraction: <br> Illustrate using a number line: | Use of concrete materials e.g. fraction bars, fraction circles, paper strips: $1 \frac{1}{4}+\frac{2}{4}=1 \frac{3}{4}$ <br> Use of bar models and other visual aids: $\frac{3}{5}+\frac{4}{5}=$ $\square$ $\square$ $\frac{7}{9}-\frac{3}{9}$ $\square$ $2-\frac{3}{4}=\frac{8}{4}-\frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$ | Pupils to use pictorial representations to support understanding: $\frac{1}{2}+\frac{1}{8}=\frac{4}{8}+\frac{1}{8}=\frac{5}{8}$ $\square$ $1 \frac{3}{4}-\frac{5}{8}=1 \frac{1}{8}$ $\square$ | Pupils continue to use pictorial representations to support understanding: $\frac{2}{3}+\frac{3}{5}=1 \frac{4}{15}$ |


|  |  |  |  | Pupils to form calculations as number sentences, drawing a horizontal line to separate the numerator and denominator: $\begin{aligned} & \frac{3}{8}+\frac{2}{8}=\frac{5}{8} \\ & \frac{7}{12}-\frac{2}{12}=\frac{5}{12} \end{aligned}$ <br> Represent on part-whole models: | Pupils to form calculations as number sentences, drawing a horizontal line to separate the numerator and denominator. Write answers as improper and mixed fractions: $2-\frac{3}{4}=\frac{8}{4}-\frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$ | Pupils to form calculations as number sentences, drawing a horizontal line to separate the numerator and denominator. Write answers as improper and mixed fractions: $1 \frac{3}{4}-\frac{5}{8}=1 \frac{1}{8}$ | Adding and subtracting fractions where denominators are not multiples of the same number: $\begin{aligned} & \frac{7}{9}-\frac{1}{2}=\frac{14}{18}-\frac{9}{18}=\frac{5}{18} \\ & \frac{3}{4}+\frac{2}{5}=\frac{15}{20}+\frac{8}{20}=\frac{23}{20}=1 \frac{3}{20} \end{aligned}$ <br> Adding mixed numbers when the added fractions equal less than one (add the whole numbers then the fractions): $1 \frac{1}{2}+2 \frac{1}{6}=1 \frac{3}{6}+2 \frac{1}{6}=3 \frac{4}{6}=3 \frac{2}{3}$ <br> Adding mixed numbers when the added fractions equal more than one (convert to an improper fraction before adding): $\begin{aligned} & 1 \frac{1}{2}+2 \frac{1}{6}=\frac{3}{2}+\frac{13}{6}= \\ & \frac{9}{6}+\frac{13}{6}=\frac{22}{6}=3 \frac{4}{6}= \\ & 3 \frac{2}{3} \end{aligned}$ <br> Subtracting mixed numbers (change to an improper fraction): $\begin{aligned} & 3 \frac{2}{5}-1 \frac{7}{10}=\frac{17}{5}-\frac{17}{10}= \\ & \frac{34}{10}-\frac{17}{10}=\frac{17}{10}=1 \frac{7}{10} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Written Calculation Guidance - Multiplication and Division with Fractions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EYFS | YEAR 1 | YEAR 2 | YEAR 3 | YEAR 4 | YEAR 5 | YEAR 6 |
|  |  |  |  |  |  | Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams by materials and diagram | Multiply simple pairs of proper fractions, writing the answer in its simplest form. <br> Divide proper fractions by whole numbers. |
|  |  |  |  |  |  | Pupils link multiplying fractions to repeated addition. Use concrete and pictorial resources to represent this: $\left.\begin{aligned} & \frac{1}{6} \times 4=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3} \\ & \square \square\|\|a\| \\ & \square \\ & \square\|a\| l \mid \\ & \square \text { sixh } \\ & \square \\ & \square \end{aligned} \right\rvert\,$ <br> When there is a mixed number, multiply the whole numbers together and then multiply the fraction by the whole number: $\begin{gathered} 2 \frac{3}{4} \times 3 \\ \square \square \square ा \\ \square \square \square ा \\ \square \square ा \end{gathered}$ | Multiplication <br> Visual representations to show that when multiplying two fractions together, the product is smaller than the fractions multiplied. The multiplication symbol means 'of': $\begin{aligned} & \frac{2}{3} \times \frac{4}{5}=\frac{8}{15} \\ & \frac{2}{3} \text { of } \frac{4}{5}=\frac{8}{15} \end{aligned}$ <br> Division <br> Visual representations to show that dividing a fraction by a whole number makes it smaller: $\frac{1}{4} \div 2=\frac{1}{8}$ |



